Word Break
暴力递归
- 平均复杂度为O(n!),最差为s="aaaa...aaa", dict=['a','aa','aaa', ...], O(n^n)
递推的定义是:从start开始到s的最末,是否满足word break
class Solution { public boolean wordBreak(String s, List<String> wordDict) { //turn list into set HashSet<String> set = new HashSet<>(); for (int i = 0; i < wordDict.size(); i++) { set.add(wordDict.get(i)); } if (set.contains(s)) return true; return helper(s, set, 0); } public boolean helper(String s, Set<String> dict, int start) { if (start == s.length()) return true; for (int i = start+1; i <= s.length(); i++) { String sub = s.substring(start, i); if (dict.contains(sub) && helper(s, dict, i)) { return true; } } return false; } }
记忆化递归 (memo array)
- 通过递归发现,有很多的重复计算,这就要考虑到保存从尾端算起的长度数列,如果已经计算过了,就可以直接运用结果
- 注意这里用的是Boolean(a.k.a Object)而非boolean (primitive type),因为保存的是计算结果可能为true也可能为false,所以要用Object,当为赋值的时候为null
- O(n^2)
public class Solution {
public boolean wordBreak(String s, List<String> wordDict) {
return word_Break(s, new HashSet(wordDict), 0, new Boolean[s.length()]);
}
public boolean word_Break(String s, Set<String> wordDict, int start, Boolean[] memo) {
if (start == s.length()) {
return true;
}
if (memo[start] != null) {
return memo[start];
}
for (int end = start + 1; end <= s.length(); end++) {
if (wordDict.contains(s.substring(start, end)) && word_Break(s, wordDict, end, memo)) {
return memo[start] = true;
}
}
return memo[start] = false;
}
}
- BFS
- 画BFS树,注意这里,queue保存的是每个分割点
- 同时,需要用一个visited数组,记录已经访问过的节点。这是为了处理当字典里存在['a', 'aa', 'aaa',...], s='aaaaa...aaa' 这样的case
- 每个起始点都搜索整个given string
public class Solution {
public boolean wordBreak(String s, List<String> wordDict) {
HashSet<String> dict = new HashSet(wordDict);
//store the position into the queue
Queue<Integer> queue = new LinkedList<>();
int[] visited = new int[s.length()];
queue.add(0);
while (!queue.isEmpty()) {
int start = queue.remove();
if (visited[start] == 0) {
for (int i = start + 1; i <= s.length(); i++) {
String str = s.substring(start, i);
if (dict.contains(str)) {
queue.add(i);
if (i == s.length()) return true;
}
}
}
visited[start] = 1;
}
return false;
}
}
- DP
- 可以分为两个不同的子问题,如果这两个子问题分别满足,那么就可以满足。
- dp[i]定义为以ith为结尾的string是否可以wordbreak
- 其通项则为从0到i是否满足, dp[j]==true && set.contains[substring(j,i)]
- 但是由于substring,注意初始化dp[s.length()+1]
Word Break II
- HashMap, key是index, value为以这个index组成的strings.这样可以减少重复的visited