Longest Common Prefix
LCP(S1,S2,..Sn)=LCP(LCP(LCP(S1,S2),S3),...Sn)
遍历S数组,不断更新prefix
- startsWith 等价于 indexOf(prefix) == 0
- removeLast 通过
substing(0, prefix.length()-1) - O(S),其中S为数组里所有chars的个数,worstcase,当所有string都相同时候,总共需要比较S次
public String longestCommonPrefix(String[] strs) { if (strs.length == 0) return ""; String prefix = strs[0]; for (int i = 1; i < strs.length; i++) while (strs[i].indexOf(prefix) != 0) { prefix = prefix.substring(0, prefix.length() - 1); if (prefix.isEmpty()) return ""; } return prefix; }
遍历prefix,这里即为strs[0], vertical scanning
- 当strs中存在非常短的数组的时候,若还是用上述方法,依然需要比较S次。于是这里考虑把所有string左对齐,从头开始比较
- 复杂度仍为O(S),但是在best case的情况下,只需要n * minLen次比较即可
public String longestCommonPrefix(String[] strs) { if (strs == null || strs.length == 0) return ""; for (int i = 0; i < strs[0].length() ; i++){ char c = strs[0].charAt(i); for (int j = 1; j < strs.length; j ++) { if (i == strs[j].length() || strs[j].charAt(i) != c) //第i位也是不满足的 return strs[0].substring(0, i); } } return strs[0]; }
Divide & Conquer
public String longestCommonPrefix(String[] strs) {
if (strs == null || strs.length == 0) return "";
return longestCommonPrefix(strs, 0 , strs.length - 1);
}
private String longestCommonPrefix(String[] strs, int l, int r) {
if (l == r) {
return strs[l];
}
else {
int mid = (l + r)/2;
String lcpLeft = longestCommonPrefix(strs, l , mid);
String lcpRight = longestCommonPrefix(strs, mid + 1,r);
return commonPrefix(lcpLeft, lcpRight);
}
}
String commonPrefix(String left,String right) {
int min = Math.min(left.length(), right.length());
for (int i = 0; i < min; i++) {
if ( left.charAt(i) != right.charAt(i) )
return left.substring(0, i);
}
return left.substring(0, min);
}
Follow ups
Given a set of keys S = [S1,S2...Sn], find the longest common prefix among a string q and S. This LCP query will be called frequently. We could optimize LCP queries by storing the set of keys S
- tire搜寻的prefix路径中经过的每个node,必须有且只有一个子元素,否则无法成为所有String的Common prefix
- prefix中经过的每个node,不能是某个string的结束位置。否则prefix则会比string长了
public String longestCommonPrefix(String q, String[] strs) {
if (strs == null || strs.length == 0)
return "";
if (strs.length == 1)
return strs[0];
Trie trie = new Trie();
for (int i = 1; i < strs.length ; i++) {
trie.insert(strs[i]);
}
return trie.searchLongestPrefix(q);
}
class TrieNode {
// R links to node children
private TrieNode[] links;
private final int R = 26;
private boolean isEnd;
// number of children non null links
private int size;
public void put(char ch, TrieNode node) {
links[ch -'a'] = node;
size++;
}
public int getLinks() {
return size;
}
//assume methods containsKey, isEnd, get, put are implemented as it is described
//in https://leetcode.com/articles/implement-trie-prefix-tree/)
}
public class Trie {
private TrieNode root;
public Trie() {
root = new TrieNode();
}
//assume methods insert, search, searchPrefix are implemented as it is described
//in https://leetcode.com/articles/implement-trie-prefix-tree/)
private String searchLongestPrefix(String word) {
TrieNode node = root;
StringBuilder prefix = new StringBuilder();
for (int i = 0; i < word.length(); i++) {
char curLetter = word.charAt(i);
if (node.containsKey(curLetter) && (node.getLinks() == 1) && (!node.isEnd())) {
prefix.append(curLetter);
node = node.get(curLetter);
}
else
return prefix.toString();
}
return prefix.toString();
}
}